
1
5thSASTech 2011, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14.

An Efficient Parallel CMM-CSD Modular Exponentiation

Algorithm by Using a New Modified Modular Multiplication

Algorithm

Abdalhossein Rezai and Parviz Keshavarzi

 Electrical and Computer Engineering Faculty

Semnan University

Semnan, Iran

a_h_rezai@sun.semnan.ac.ir, pkeshavarzi@semnan.ac.ir

Paper Reference Number: 16

Name of the Presenter: Abdalhossein Rezai

Abstract

This paper presents a new modified Montgomery modular multiplication algorithm based on

canonical signed-digit (CSD) representation, and sliding window method. In this modified

Montgomery modular multiplication algorithm, signed-digit recoding technique is used in order to

increase probability of the zero bits. Also sliding window method is used in order to reduce the

multiplication steps considerably. In addition, a new efficient modular exponentiation algorithm based

on this new modular multiplication algorithm, CMM method and parallel structure is presented. In this

new CMM-CSD modular exponentiation algorithm, not only the common part of modular

multiplication is computed once rather than several times but also the modular multiplication and

modular squaring operations is performed in parallel. Using this new modular exponentiation

algorithm, the security of the cryptosystem increased considerably. The results show that the average

number of multiplication steps in the proposed CMM-CSD exponentiation algorithm is reduced

considerably. Therefore, the efficiency of the proposed CMM-CSD modular exponentiation algorithm

increased considerably in compare with Dusse-Kaliski’s Montgomery algorithm, Ha-Moon’s

improved Montgomery algorithm, Wu’s CMM-MSD Montgomery algorithm, Wu et al.’s CMM-SDR

Montgomery algorithm and Wu’s CMM-CSD Montgomery algorithm.

Key words: public-key cryptography, security, fast modular exponentiation, Montgomery modular

multiplication, signed-digit recoding.

1. Introduction

In the recent years, the electronic communication and the internet service like email,

e-commerce and e-banking have been widely used in our life. So information security

becomes an increasing concern. The core technology used for information protection is

cryptography. Public-key cryptography (PKC) is the important component of the

cryptography (Xiangyan et al. 2009). The modular exponentiation with large modulus is a

mailto:pkeshavarzi@semnan.ac.ir

2
5thSASTech 2011, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14.

crucial operation in many PKCs such as RSA and DSA. This operation is implemented by

repeating modular multiplication. So the efficiency of the many PKCs is determined by the

efficiency of modular multiplication algorithm and the number of modular multiplication

which required in modular exponentiation algorithm (Nedjah and Murelle 2009a, Wu 2009a).

Montgomery modular multiplication algorithm (Montgomery 1985) is an efficient

algorithm for modular multiplication because it avoids division by the modulus (Wu 2009a,

Nedjah and Murelle 2009a). There are many research efforts in order to speed up the

performance of the Montgomery modular multiplication algorithm such as high-radix design

(Pinckney and Harris 2008, Tawalbeh et al. 2005), scalable design (Shieh and Lin 2010,

Pinkey and Harris 2008), parallel calculation quotient and partial result (Keshavarzi and

Harrison 98) and signed-digit recoding (Koc and Hung 92, Philips and Burgess 04).

Also, there are many research efforts in order to reduce the number of modular

multiplication such as signed-digit recoding (Wu 2009 a, Wu et al. 2008), CMM method

(Ha and Moon 98, Wu 2009a, Wu 2009b, Rezai and Keshavarzi 2011) and sliding window

method (Nedjah and Murelle 2009a, Nedjah and Murelle 2009b).

In this paper, we present a new Montgomery modular multiplication algorithm based on

sliding window method, multiple bits scan-multiple bits shift technique and signed-digit

technique in order to increase the efficiency of the modular multiplication. In addition we

proposed using this new modular multiplication in order to increase the efficiency of the

modular exponentiation algorithm. In this new modular exponentiation algorithm, we used

also CMM method and parallel structure in order to increase the efficiency of the modular

exponentiation algorithm. So the efficiency and the security of the cryptosystem which use of

the proposed exponentiation algorithm increase considerably.

The rest of this paper is organized as follows: section 2 describes the preliminaries of the

proposed algorithms. The proposed modular multiplication algorithm and its application in

CMM-CSD modular exponentiation algorithm is presented in section 3. Section 4 evaluates

the proposed algorithms. Finally conclusion is given in section 5.

2. Preliminaries

2.1. The Montgomery modular multiplication algorithm

Montgomery (1985) proposed a modular multiplication algorithm which speeds up the

modular multiplication and modular exponentiation algorithm by replacing the trial division

by the modulus with a simple right shift (Wu 2009a). Algorithm 1 shows the radix-2

Montgomery modular multiplication algorithm.

Algorithm 1: The radix-2 Montgomery modular multiplication algorithm

Input: X,Y,M;

Output: S(n)=XY2
-n

 mod M

1. S (0):= 0;

 For i = 0 to n-1 Do

2. qi := (S(i) + xiY) mod 2;

3. S (i+1):= (S (i) + xiY + qiM) / 2;

4. If S (n)  M Then S (n) – M

This algorithm computes S (n) =XY2
-n

 mod M in n- loop iterations. So it is time-consume

operation.

3
5thSASTech 2011, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14.

2.2. The modular exponentiation algorithm
As modular exponentiation consists of series of modular multiplications, the performance

of the modular multiplication is determined by the efficiency of the implementation of the

modular multiplication (Wu 09a, Nedjah and Murelle 2009a). The Montgomery modular

exponentiation algorithm is shown in algorithm 2:

Algorithm 2: The Montgomery modular exponentiation algorithm

Input: A,E,R,N;

Output: C:=A
E
 mod N;

1. S:= AR mod N, C:=R mod N;

 For i = 0 to k-1 Do

2. If (ei=1) Then {C:=Mont(S,C),S:=Mont(S,S)};

3. Else S:=Mont(SS);

4. C:=Mont(C,1);

In algorithm 2, when the exponent bit is nonzero, both Mont(S,C) and Mont(S,S), are

performed. Ha and Moon (1998) proposed the common part in Mont(S,C) and Mont(S,S) can

be computed once rather than twice. There are many attempts (Ha and Moon 98, Wu et al.

2008, Wu 2009a, Wu 2009b) in order to speed up the performance of modular exponentiation

algorithm based on this idea. One of the recent attempts is the parallel CMM-CSD

Montgomery algorithm (Wu 2009b) which is shown in algorithm 3:

Algorithm 3: The Parallel CMM-CSD Montgomery modular exponentiation algorithm

Input: M,ECSD,N,R;

Output: [1]
E

MC mod N; [-1]
E

MD mod N;

1. S = MR mod N, C = D = R mod N;

 For i = 0 to m Do

 Parallel begin

2. If (ei = 1) Then C = Mont(S,C);

3. If (ei = 1) Then D = Mont(S,D);

4. S = Mont(S,S);

 Parallel End;

 Parallel begin

5. C = Mont(C,1);

6. D = Mont(D,1);

 Parallel End;

In algorithm 3, the modular squaring and modular multiplication operations are executed in

parallel. Also the registers C and D are used in order to store the operation results of the

positive digit and negative digits in exponent ECSD respectively. In addition in this algorithm

by using CMM method, the common part of three multiplication is computed just one.

3. The Proposed CMM-CSD Modular Exponentiation

In serial-parallel multiplication, partial result shifts one bit per iteration. Also

multiplication by zero bit results in zero, but this multiplication by zero is performed and

implemented per iteration. In this paper, we proposed a new modified Montgomery modular

multiplication by recoding and then by partitioning the multiplier. This performs

multiplication by zero partition with any length in only one-cycle instead of several cycles.

The proposed modular multiplication algorithm is shown in algorithm 4.

4
5thSASTech 2011, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14.

Algorithm 4: The modified Montgomery modular multiplication algorithm

Input: X,Y, M;

Output: P:=XY2
-n

 mod M;

1. P=0;

{recoding phase}

2. Compute D by performed canonical recoding on X;

 parallel begin

 {partitioning phase}

3. Building Π(D) using algorithm 5;

4. Let w=# Π(D) ;

 {pre-computation phase}

5. Compute and store ViY

 Parallel End

{multiplication phase}

6. For i = 0 to w-1 Do

7. P:= P +ViY;

8. m:= P0
'
0M mod il2 ;

9. P:= (P+mM)/ il2 ;

10. If (P>M) Then P=P-M;

In this algorithm, li is the length (i.e. the number of bits) of ith partition, #Π(D) is the

number of partitioning in the multiplier and Vi is the corresponding partition value of Π(D).

In recoding phase of this new algorithm, the canonical recoding is performed on the

multiplier. In partitioning phase, the partitioning is performed on the resulted signed-digit

multiplier. The partitioning strategy instrumented in this algorithm scans the multiplier from

the least significant digit to the most significant digit according to Algorithm 5. In this

strategy, zero windows are allowed to have an arbitrary length, but the maximum length of

nonzero windows should be the exacted value of d digit.

Algorithm 5: The Partitioning Algorithm

Input: D,d

Output: П(D)

1. ZP: Check the incoming single digit;

2. If it is zero Then stay in ZP

3. Else go to NZP;

4. NZP: Stay in NZP until all d digits are collected;

5. Check the incoming single digit;

6. If it is zero Then go to ZP

7. Else go to NZP;

The transition probability graph of proposed modular multiplication is shown in Fig. 1.

This graph is similar to the transition probability graph of the adaptive m-ary segmentation

canonical recoding multiplication algorithm in (Koc and Hung 1992, Philips and Burgess 04).

5
5thSASTech 2011, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14.

Fig. 1: Transition probability graph for the proposed modular multiplication algorithm

In pre-computation phase of algorithm 4, the least significant digit of nonzero partition is

either 1 or 1 , which implies that the nonzero partition value is always an odd number. So we

require only pre-computation of ViY for odd value of Vi. Note that the pre-computation phase

and the partition phase are performed independently in parallel. This speeds up modular

multiplication.

The multiplication phase of algorithm 4 is performed w times. Recall that w denote the

number of partitioning in the signed-digit multiplier. In the each iteration of multiplication

phase of algorithm 5, li bits of multiplier and n-bit multiplicand are processed.

We propose also using this new modular multiplication algorithm in order to speeding up

the CMM-CSD Montgomery exponentiation algorithm (Wu 2009b) as shown in algorithm 6.

Algorithm 6: The proposed CMM-CSD Montgomery modular exponentiation algorithm

Input: M,ECSD,N,R;

Output: [1]E
M:C  mod N; [-1]E

M:D  mod N;

 Parallel begin

1. S: = MR mod N, C := D := R mod N;

2. Compute S1 by performed steps 2-5 of algorithm 4 on S by one multiplication loop delay;

 Parallel End

 For i = 0 to m Do

 parallel begin

3. If (ei = 1) Then C := S1C mod N; /* perform steps 6-10 of algorithm 4 for positive signed-digit */

4. If (ei = 1) Then D := S1D mod N; /* perform steps 6-10 of algorithm 4 for negative signed-digit */

5. S: = S1S mod N; /* perform steps 6-10 of algorithm 4 */

6. Compute S1 by performed steps 2-4 of algorithm 4 on S by one multiplication loop delay;

 Parallel End;

 Parallel begin

7. C:= C×1 mod N; /* perform algorithm 4 */

8. D:= D×1 mod N; /* perform algorithm 4 */

 Parallel end;

In this algorithm, for ei=1, both S1C mod N and S1S mod N are computed in parallel. Also

for ei=1, both S1D mod N and S1S mod N are computed in parallel. In addition by using CMM

method, the common part of two operations is computed once rather than twice.

In step 1 of this algorithm, S is computed by using algorithm 4. In step 2, S1 is computed

by executing steps 2-5 of algorithm 4 on S by one multiplication loop delay in compare with

step 1. In steps 3 and 4 of algorithm 6, [1]E
M and]1[

E
M are computed based on value of the ei.

These values are computed by executing steps 6-10 of algorithm 4. In step 5 of algorithm 6,

the partial result, S, is computed by executing steps 6-10 of algorithm 4. Also in step 6 of this

algorithm S1 is computed by executing steps 2-4 of algorithm 4. This step is computed by one

multiplication loop delay in compare with step 5. The outputs of this algorithm are
[1]E

M:C  and]1[
E

M:D  . In this algorithm, the exponentiation operation CSDE
M is depicted as

1E
DCM CSD  .

1
0

1
… 1

1/2

1

1/3

1/2

d 2
2/3

6
5thSASTech 2011, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14.

4. Evaluation

 In the proposed modified Montgomery modular multiplication algorithm, sliding window

method is performed on the signed-digit multiplier. So the Hamming weight of the multiplier

is
43d

3n


. Therefore based on the computational analyses of Ha and Moon (1998), for n-bit

modulus, both operations S1C mod N, and S1D mod N require

1))(2n
43d

6n
(1)2(2n1)2)(2n

43d

6n
(






multiplication steps. Also the operation S1S mod N requires

22n
43d

6n
1)2(2n2)n

43d

6n
(

2







multiplication steps. In the proposed CMM-CSD modular exponentiation for ei=1, both

S1C mod N and S1S mod N are performed in parallel. Also for ei=1, both S1D mod N and

S1S mod N are performed in parallel. In addition we use of radix-2 signed-digit exponent. So

the probability of digits "0", "1" and "-1" is 2/3, 1/6 and 1/6 respectively. Therefore the

proposed modular exponentiation algorithm for k-bit exponent takes

)
43d

6n

43d

12n
k(1)])(2n

43d

6n
k[(

3

1
1)])(2n

43d

6n
k[(

3

2 2












multiplication steps, however the Dusse and Kaliski’s exponentiation algorithm(Dusse and

Kaliski 1990), the Ha-Moon’s improved Montgomery exponentiation algorithm (Ha and

Moon 1998), the Wu et al.’s CMM-MSD algorithm (Wu et al. 2008), Wu’s improved

CMM-MSD exponentiation algorithm (Wu 2009a) and Wu’s parallel CMM-CSD

exponentiation algorithm (Wu 2009b) require)2(5.1 2 nnk  ,)45(5.0 2 nnk  ,)75.022(5.0 2  nnk ,

)2nn(k833.1 2  and)33.522(5.0 2  nnk multiplication steps respectively. So, the proposed

modular exponentiation algorithm reduces the overall number of multiplication steps on

average at about

43

4
1

)2(5.1

)
43

6

43

12
(

1
2

2










dnnk

d

n

d

n
k

)43(5.2

12
1

)45(5.0

)
43

6

43

12
(

1
2

2










dnnk

d

n

d

n
k

)43(833.1

12
1

)2(833.1

)
43

6

43

12
(

1
2

2










dnnk

d

n

d

n
k

43

12
1

)75.022(5.0

)
43

6

43

12
(

1
2

2










dnnk

d

n

d

n
k

43

12
1

)33.522(5.0

)
43

6

43

12
(

1
2

2










dnnk

d

n

d

n
k

in compare with (Dusse and Kaliski 1990, Ha and Moon 1998, Wu 2009a, Wu et al. 2008,

Wu 2009b) respectively.

We summarize the multiplication steps improvement for the proposed CMM-CSD modular

exponentiation algorithm over exponentiation algorithm in (Dusse and Kaliski 1990, Ha and

Moon 1998, Wu 2009a, Wu et al. 2008, Wu 2009b) for various window widths in Table 1.

7
5thSASTech 2011, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14.

Window

width

Improvement percentage

Dusse and Kaliski (1990) Ha and Moon (1998) Wu(2009a) Wu et al.(2008), Wu (2009b)

d=3 69.2% 63.1% 49.6% 7.7%

d=4 75% 70% 59.1% 25%

d=5 78.9% 74.7% 65.5% 36.8%

d=6 81.8% 78.2% 70.2% 45.5%

d=7 84% 80.8% 73.8% 52%

d=8 85.7% 82.9% 76.6% 57.1%

d=9 87.1% 84.5% 78.9% 61.3%

d=10 88.2% 85.9% 80.7% 64.7%

Table 1: Multiplication step improvement of the proposed CMM-CSD modular

exponentiation algorithm

These results are represented graphically in Fig. 2.

0%

20%

40%

60%

80%

100%

3 4 5 6 7 8 9 10
Window width

%
 o

f
im

p
r
o

v
e
m

e
n

ts

Improvement over Dusse and Kaliski (1990)

Improvement over Ha and Moon (1998)

Improvement overWu (2009a)

Improvement over Wu et al.(2008) and

Wu(2009b)

Fig. 2: Multiplication step improvement of the proposed CMM-CSD modular exponentaition

algorithm

As it is shown in Table 1 and Fig. 2, the proposed modular exponentiation algorithm

reduces the multiplication steps considerably.

The results show that this new CMM-CSD exponentiation algorithm reduces the number of

multiplication steps on average at about 69.2%-88.2%, 63.1%-85.9%, 7.7%-64.7%,

49.6%-80.7% and 7.7%-64.7% in compare with Dusse and Kaliski (1990), Ha and Moon

(1998), Wu et al. (2008), Wu (2009a) and Wu (2009b) respectively for d=3-10.

5. Conclusions

This paper presents a new efficient modular exponentiation algorithm based on a new

modified Montgomery modular multiplication. Also this new modular exponentiation uses

other techniques such as CMM method and parallel processing. In the proposed modular

multiplication algorithm, by performing sliding window method on signed-digit multiplier,

the Hamming weight of multiplier is reduced considerably. Also by skipping from zero digit

multiplication and the following required addition, the efficiency of modular multiplication is

increased considerably. In the proposed modular exponentiation algorithm, by using the

CMM method, the common part of the modular multiplication is computed once rather than

8
5thSASTech 2011, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14.

several times. Also by using the parallel processing, the speed of the proposed modular

exponentiation increases considerably. Using this new modular exponentiation algorithm, the

security of the cryptosystem increased considerably. The results show that the average

number of multiplication steps in the proposed CMM-CSD exponentiation algorithm is

reduced at about 69.2%-88.2%, 63.1%-85.9%, 7.7%-64.7%, 49.6%-80.7% and 7.7%-64.7%

in compare with Dusse and Kaliski (1990), Ha and Moon (1998), Wu et al. (2008), Wu

(2009a) and Wu (2009b) respectively for d=3-10.

References

Dusse, S. R., Kaliski, B. S. (1990), A cryptographic library for the Motorola DSP 56000, in

Proceedings of the advance in cryptology UROCRYPT’90, LNCS, 73,230-244.

Ha, J. C., and Moon S. J. (1998), A common-multiplicand method to the Montgomery

algorithm for speeding up exponentiation, Information processing letters, 66(2),105–107.

Keshavarzi, P. and Harrison, C. (1998), A new modular multiplication algorithm for VLSI

implementation of public-key cryptography, in proceedings of First international symposium

on communication systems and digital signal processing, 516-519.

Koc, C.K., and Hung, C.Y. (1992), Adaptive m-ary segmentation and canonical recoding

algorithms for multiplication of large binary numbers, computer mathematic application, 24,

3-12.

Montgomery, P. L. (1985), Modular multiplication without trial division, Mathematics of

computation, 44, 519-521.

Nedjah, N., and Mourelle, L.M. (2009a), A hardware/software co-design versus

hardware-only implementation of modular exponentiation using the sliding-window method,

Journal of circuts, systems and computers, 18, 295-310.

Nedjah, N., and Mouller, L.M. (2009b), High-performance hardware of the sliding-window

method for parallel computation of modular exponentitions, International journal of parallel

programming, Springer Netherlands, 37, 537-555.

Philips, B., and Burgess, N. (2004), Minimal weight digit set conversions, IEEE Transaction

on computers, 53, 666-677.

Pinckney, N., and Harris, D. (2008), Parallelized radix-4 scalable Montgomery multipliers,

Journal of Integrated Circuits and Systems, 3(1), 39-45.

Rezai, A., and Keshavarzi, P. (2011), High-performance Modular Exponentiation Algorithm

by Using a New Modified Modular Multiplication Algorithm and Common-Multiplicand-

Multiplication Method, in Proceedings of world congress on internet security, in press.

Shieh, M., and Lin, W. (2010), Word-based Montgomery modular multiplication algorithm

for low-latency scalable architectures, IEEE Transaction on computers, 59(8), 1145-1151.

Tawalbeh, L. A., Tenca, A. F., and Koc, C. K. (2005), A radix-4 scalable design, IEEE

Potentials, 24(2),16-18.

Wu, C. (2009a), An efficient common-multiplicand-multiplication method to the

Montgomery algorithm for speeding up exponentiation, Information Sciences, 179, 410-421.

Wu, C. (2009b), Fast parallel Montgomery binary exponentiation algorithm using canonical

signed-digit recoding technique, Algorithms and Architectures for Parallel Processing, LNCS

5574, 428-438.

http://www.springerlink.com/content/978-3-642-03094-9/

9
5thSASTech 2011, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14.

Wu, C., Lou, D. and Chang, T. (2008), An efficient Montgomery exponentiation algorithm for

public-key cryptosystem, In proceedings of IEEE international conference on intelligence and

security information, 284-285.

Xiangyan, F., Jiahang, Z., Tinggang, X., and Youguang, Y. (2009), The researcher and

implement of high-speed modular multiplication algorithm basing on parallel pipelining, In

Proceedings of the Asia-Pacific Conference on Information Processing, 1,398-403.

