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Abstract 

This paper presents a new modified Montgomery modular multiplication algorithm based on     

canonical signed-digit (CSD) representation, and sliding window method. In this modified 

Montgomery modular multiplication algorithm, signed-digit recoding technique is used in order to 

increase probability of the zero bits. Also sliding window method is used in order to reduce the 

multiplication steps considerably. In addition, a new efficient modular exponentiation algorithm based 

on this new modular multiplication algorithm, CMM method and parallel structure is presented. In this 

new CMM-CSD modular exponentiation algorithm, not only the common part of modular 

multiplication is computed once rather than several times but also the modular multiplication and 

modular squaring operations is performed in parallel. Using this new modular exponentiation 

algorithm, the security of the cryptosystem increased considerably. The results show that the average 

number of multiplication steps in the proposed CMM-CSD exponentiation algorithm is reduced 

considerably. Therefore, the efficiency of the proposed CMM-CSD modular exponentiation algorithm 

increased considerably in compare with Dusse-Kaliski’s Montgomery algorithm, Ha-Moon’s 

improved Montgomery algorithm, Wu’s CMM-MSD Montgomery algorithm, Wu et al.’s CMM-SDR 

Montgomery algorithm and Wu’s CMM-CSD Montgomery algorithm. 

 
Key words: public-key cryptography, security, fast modular exponentiation, Montgomery modular 

multiplication, signed-digit recoding.  
 

 

1. Introduction 

In the recent years, the electronic communication and the internet service like email,         

e-commerce and e-banking have been widely used in our life. So information security 

becomes an increasing concern. The core technology used for information protection is 

cryptography. Public-key cryptography (PKC) is the important component of the 

cryptography (Xiangyan et al. 2009). The modular exponentiation with large modulus is a 
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crucial operation in many PKCs such as RSA and DSA. This operation is implemented by 

repeating modular multiplication. So the efficiency of the many PKCs is determined by the 

efficiency of modular multiplication algorithm and the number of modular multiplication 

which required in modular exponentiation algorithm (Nedjah and Murelle 2009a, Wu 2009a).  

Montgomery modular multiplication algorithm (Montgomery 1985) is an efficient 

algorithm for modular multiplication because it avoids division by the modulus (Wu 2009a, 

Nedjah and Murelle 2009a). There are many research efforts in order to speed up the 

performance of the Montgomery modular multiplication algorithm such as high-radix design 

(Pinckney and Harris 2008, Tawalbeh et al. 2005), scalable design (Shieh and Lin 2010, 

Pinkey and Harris 2008), parallel calculation quotient and partial result (Keshavarzi and 

Harrison 98) and signed-digit recoding (Koc and Hung 92, Philips and Burgess 04). 

Also, there are many research efforts in order to reduce the number of modular 

multiplication such as signed-digit recoding ( Wu 2009 a, Wu et al. 2008), CMM method   

(Ha and Moon 98, Wu 2009a, Wu 2009b, Rezai and Keshavarzi 2011) and sliding window 

method (Nedjah and Murelle 2009a, Nedjah and Murelle 2009b). 

In this paper, we present a new Montgomery modular multiplication algorithm based on 

sliding window method, multiple bits scan-multiple bits shift technique and signed-digit 

technique in order to increase the efficiency of the modular multiplication. In addition we 

proposed using this new modular multiplication in order to increase the efficiency of the 

modular exponentiation algorithm. In this new modular exponentiation algorithm, we used 

also CMM method and parallel structure in order to increase the efficiency of the modular 

exponentiation algorithm. So the efficiency and the security of the cryptosystem which use of 

the proposed exponentiation algorithm increase considerably. 

The rest of this paper is organized as follows: section 2 describes the preliminaries of the 

proposed algorithms. The proposed modular multiplication algorithm and its application in 

CMM-CSD modular exponentiation algorithm is presented in section 3. Section 4 evaluates 

the proposed algorithms. Finally conclusion is given in section 5. 

 

2. Preliminaries 
 

2.1. The Montgomery modular multiplication algorithm 

Montgomery (1985) proposed a modular multiplication algorithm which speeds up the 

modular multiplication and modular exponentiation algorithm by replacing the trial division 

by the modulus with a simple right shift (Wu 2009a). Algorithm 1 shows the radix-2 

Montgomery modular multiplication algorithm. 

 
Algorithm 1: The radix-2 Montgomery modular multiplication algorithm 

Input: X,Y,M; 

Output: S(n)=XY2
-n

 mod M                               

1.  S (0):= 0;           

     For i = 0 to n-1 Do 

2.       qi := (S(i) + xiY) mod 2;  

3.       S (i+1):= (S (i) + xiY + qiM) / 2; 

4.  If S (n)  M  Then S (n) – M 

 

This algorithm computes S (n) =XY2
-n

 mod M in n- loop iterations. So it is time-consume 

operation. 
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2.2. The modular exponentiation algorithm 
As modular exponentiation consists of series of modular multiplications, the performance 

of the modular multiplication is determined by the efficiency of the implementation of the 

modular multiplication (Wu 09a, Nedjah and Murelle 2009a). The Montgomery modular 

exponentiation algorithm is shown in algorithm 2: 

 
Algorithm 2: The Montgomery modular exponentiation algorithm 

Input: A,E,R,N;        

Output: C:=A
E
 mod N;                                

1.  S:= AR mod N, C:=R mod N;           

     For i = 0 to k-1 Do 

2.         If (ei=1) Then {C:=Mont(S,C),S:=Mont(S,S)};  

3.         Else S:=Mont(SS); 

4. C:=Mont(C,1); 

 

In algorithm 2, when the exponent bit is nonzero, both Mont(S,C) and Mont(S,S), are 

performed. Ha and Moon (1998) proposed the common part in Mont(S,C) and Mont(S,S) can 

be computed once rather than twice. There are many attempts (Ha and Moon 98, Wu et al. 

2008, Wu 2009a, Wu 2009b) in order to speed up the performance of modular exponentiation 

algorithm based on this idea. One of the recent attempts is the parallel CMM-CSD 

Montgomery algorithm (Wu 2009b) which is shown in algorithm 3: 

 
Algorithm 3: The Parallel  CMM-CSD Montgomery modular exponentiation algorithm 

Input: M,ECSD,N,R;        

Output: [1 ]
E

MC mod N; [-1 ]
E

MD mod N; 

1. S = MR mod N, C = D = R mod N; 

   For i = 0 to m Do 

       Parallel begin 

2.           If (ei = 1) Then C = Mont(S,C); 

3.           If (ei = 1) Then D = Mont(S,D); 

4.           S = Mont(S,S); 

       Parallel End; 

  Parallel begin 

5.    C = Mont(C,1); 

6.    D = Mont(D,1); 

   Parallel End; 

 

In algorithm 3, the modular squaring and modular multiplication operations are executed in 

parallel. Also the registers C and D are used in order to store the operation results of the 

positive digit and negative digits in exponent ECSD respectively. In addition in this algorithm 

by using CMM method, the common part of three multiplication is computed just one.  

 

3. The Proposed CMM-CSD Modular Exponentiation 

In serial-parallel multiplication, partial result shifts one bit per iteration. Also 

multiplication by zero bit results in zero, but this multiplication by zero is performed and 

implemented per iteration. In this paper, we proposed a new modified Montgomery modular 

multiplication by recoding and then by partitioning the multiplier. This performs 

multiplication by zero partition with any length in only one-cycle instead of several cycles. 

The proposed modular multiplication algorithm is shown in algorithm 4. 
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Algorithm 4: The modified Montgomery modular multiplication algorithm  

Input: X,Y, M;        

Output: P:=XY2
-n

 mod M; 

1.       P=0; 

{recoding phase} 

2.    Compute D by performed canonical recoding on X; 

  parallel begin 

      {partitioning phase} 

3.         Building Π(D) using algorithm 5; 

4.         Let w=#  Π(D) ; 

      {pre-computation phase} 

5.        Compute and store ViY 

 Parallel End  

{multiplication phase}                              

6. For i = 0 to w-1 Do 

7.        P:= P +ViY; 

8.        m:= P0
'
0M  mod il2 ; 

9.        P:= (P+mM)/ il2 ;  

10.  If (P>M) Then P=P-M;  

 

In this algorithm, li is the length (i.e. the number of bits) of ith partition, #Π(D) is the 

number of partitioning in the multiplier and Vi is the corresponding partition value of  Π(D).  

In recoding phase of this new algorithm, the canonical recoding is performed on the 

multiplier. In partitioning phase, the partitioning is performed on the resulted signed-digit 

multiplier. The partitioning strategy instrumented in this algorithm scans the multiplier from 

the least significant digit to the most significant digit according to Algorithm 5. In this 

strategy, zero windows are allowed to have an arbitrary length, but the maximum length of 

nonzero windows should be the exacted value of d digit. 

 
Algorithm 5: The Partitioning Algorithm 

Input: D,d 

Output: П(D) 

1. ZP: Check the incoming single digit; 

2.         If it is zero Then stay in ZP 

3.         Else go to NZP; 

4. NZP: Stay in NZP until all d digits are collected; 

5.         Check the incoming single digit; 

6.         If it is zero Then go to ZP 

7.         Else go to NZP; 
 

The transition probability graph of proposed modular multiplication is shown in Fig. 1. 

This graph is similar to the transition probability graph of the adaptive m-ary segmentation 

canonical recoding multiplication algorithm in (Koc and Hung 1992, Philips and Burgess 04). 
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Fig. 1: Transition probability graph for the proposed modular multiplication algorithm 

 

In pre-computation phase of algorithm 4, the least significant digit of nonzero partition is 

either 1 or 1 , which implies that the nonzero partition value is always an odd number. So we 

require only pre-computation of ViY for odd value of Vi. Note that the pre-computation phase 

and the partition phase are performed independently in parallel. This speeds up modular 

multiplication. 

The multiplication phase of algorithm 4 is performed w times. Recall that w denote the 

number of partitioning in the signed-digit multiplier. In the each iteration of multiplication 

phase of algorithm 5, li bits of multiplier and n-bit multiplicand are processed.  

We propose also using this new modular multiplication algorithm in order to speeding up 

the CMM-CSD Montgomery exponentiation algorithm (Wu 2009b) as shown in algorithm 6. 

 
Algorithm 6: The proposed CMM-CSD Montgomery modular exponentiation algorithm 

Input: M,ECSD,N,R;        

Output: [1]E
M:C  mod N; [-1]E

M:D  mod N; 

   Parallel begin 

1.  S: = MR mod N, C := D := R mod N; 

2.  Compute S1 by performed steps 2-5 of algorithm 4 on S by one multiplication loop delay; 

   Parallel End 

     For i = 0 to m Do 

        parallel begin 

3.         If (ei = 1) Then C := S1C mod N;   /* perform  steps 6-10 of algorithm 4 for positive signed-digit */ 

4.         If (ei = 1) Then D := S1D mod N;  /* perform  steps 6-10 of algorithm 4 for negative signed-digit */ 

5.        S: = S1S mod N;                             /* perform  steps 6-10 of algorithm 4 */ 

6.        Compute S1 by performed  steps 2-4 of algorithm 4 on S by one multiplication loop delay; 

        Parallel End; 

    Parallel begin 

7.     C:= C×1 mod N;                            /* perform  algorithm 4 */ 

8.     D:= D×1 mod N;                           /* perform   algorithm 4 */ 

     Parallel end; 

 

In this algorithm, for ei=1, both S1C mod N and S1S mod N are computed in parallel. Also 

for ei=1, both S1D mod N and S1S mod N are computed in parallel. In addition by using CMM 

method, the common part of two operations is computed once rather than twice.  

In step 1 of this algorithm, S is computed by using algorithm 4. In step 2, S1 is computed 

by executing steps 2-5 of algorithm 4 on S by one multiplication loop delay in compare with 

step 1. In steps 3 and 4 of algorithm 6, [1]E
M and ]1[

E
M are computed based on value of the ei. 

These values are computed by executing steps 6-10 of algorithm 4. In step 5 of algorithm 6, 

the partial result, S, is computed by executing steps 6-10 of algorithm 4. Also in step 6 of this 

algorithm S1 is computed by executing steps 2-4 of algorithm 4. This step is computed by one 

multiplication loop delay in compare with step 5. The outputs of this algorithm are   
[1]E

M:C  and ]1[
E

M:D  . In this algorithm, the exponentiation operation CSDE
M  is depicted as 

1E
DCM CSD  .  
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4.  Evaluation 

 In the proposed modified Montgomery modular multiplication algorithm, sliding window 

method is performed on the signed-digit multiplier. So the Hamming weight of the multiplier 

is
43d

3n


. Therefore based on the computational analyses of Ha and Moon (1998), for n-bit 

modulus, both operations S1C mod N, and S1D mod N require 

1))(2n
43d

6n
(1)2(2n1)2)(2n

43d

6n
( 



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multiplication steps. Also the operation S1S mod N requires 

22n
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multiplication steps. In the proposed CMM-CSD modular exponentiation for ei=1, both      

S1C mod N and S1S mod N are performed in parallel. Also for ei=1, both S1D mod N and     

S1S mod N are performed in parallel. In addition we use of radix-2 signed-digit exponent. So 

the probability of digits "0", "1" and "-1" is 2/3, 1/6 and 1/6 respectively. Therefore the 

proposed modular exponentiation algorithm for k-bit exponent takes 
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multiplication steps, however the Dusse and Kaliski’s exponentiation algorithm(Dusse and 

Kaliski 1990), the Ha-Moon’s improved Montgomery exponentiation algorithm (Ha and 

Moon 1998), the Wu et al.’s CMM-MSD algorithm (Wu et al. 2008), Wu’s improved    

CMM-MSD exponentiation algorithm (Wu 2009a) and Wu’s parallel CMM-CSD 

exponentiation algorithm (Wu 2009b) require )2(5.1 2 nnk  , )45(5.0 2 nnk  , )75.022(5.0 2  nnk , 

)2nn(k833.1 2   and )33.522(5.0 2  nnk  multiplication steps respectively. So, the proposed 

modular exponentiation algorithm reduces the overall number of multiplication steps on 

average at about 
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in compare with (Dusse and Kaliski 1990, Ha and Moon 1998, Wu 2009a, Wu et al. 2008, 

Wu 2009b)  respectively. 

We summarize the multiplication steps improvement for the proposed CMM-CSD modular 

exponentiation algorithm over exponentiation algorithm in (Dusse and Kaliski 1990, Ha and 

Moon 1998, Wu 2009a, Wu et al. 2008, Wu 2009b) for various window widths in Table 1. 
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Window 

width 

Improvement percentage 

Dusse and Kaliski (1990) Ha and Moon (1998) Wu( 2009a) Wu et al.(2008), Wu (2009b) 

d=3 69.2% 63.1% 49.6% 7.7% 

d=4 75% 70% 59.1% 25% 

d=5 78.9% 74.7% 65.5% 36.8% 

d=6 81.8% 78.2% 70.2% 45.5% 

d=7 84% 80.8% 73.8% 52% 

d=8 85.7% 82.9% 76.6% 57.1% 

d=9 87.1% 84.5% 78.9% 61.3% 

d=10 88.2% 85.9% 80.7% 64.7% 

Table 1: Multiplication step improvement of the proposed   CMM-CSD modular 

exponentiation algorithm 

 

These results are represented graphically in Fig. 2. 
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Fig. 2: Multiplication step improvement of the proposed  CMM-CSD modular exponentaition 

algorithm 
 

As it is shown in Table 1 and Fig. 2, the proposed modular exponentiation algorithm 

reduces the multiplication steps considerably. 

The results show that this new CMM-CSD exponentiation algorithm reduces the number of 

multiplication steps on average at about 69.2%-88.2%, 63.1%-85.9%, 7.7%-64.7%,      

49.6%-80.7% and 7.7%-64.7% in compare with Dusse and Kaliski (1990), Ha and Moon 

(1998), Wu et al. (2008),  Wu (2009a) and Wu (2009b) respectively for d=3-10. 

 

5. Conclusions 

This paper presents a new efficient modular exponentiation algorithm based on a new 

modified Montgomery modular multiplication. Also this new modular exponentiation uses 

other techniques such as CMM method and parallel processing. In the proposed modular 

multiplication algorithm, by performing sliding window method on signed-digit multiplier, 

the Hamming weight of multiplier is reduced considerably. Also by skipping from zero digit 

multiplication and the following required addition, the efficiency of modular multiplication is 

increased considerably. In the proposed modular exponentiation algorithm, by using the 

CMM method, the common part of the modular multiplication is computed once rather than 
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several times. Also by using the parallel processing, the speed of the proposed modular 

exponentiation increases considerably. Using this new modular exponentiation algorithm, the 

security of the cryptosystem increased considerably. The results show that the average 

number of multiplication steps in the proposed CMM-CSD exponentiation algorithm is 

reduced at about 69.2%-88.2%, 63.1%-85.9%, 7.7%-64.7%, 49.6%-80.7% and 7.7%-64.7% 

in compare with Dusse and Kaliski (1990), Ha and Moon (1998), Wu et al. (2008),  Wu 

(2009a) and Wu (2009b) respectively for d=3-10. 
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