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Abstract 

Canopy chlorophyll content provide vital information about exchanging of energy between vegetation 

and surrounding environment. This study proposed a method to extract canopy chlorophyll content of 

rice in northern part of Iran form multispectral sensor AVNIR-2 on board ALOS satellite. A field 

campaign was carried out in June 2010 and several biophysical and biochemical parameters were 

measured in rice fields. The well-known canopy radiative transfer model PROSAILH was inverted by 

using iterative method. To assess model inversion performance, RMSE and R2 between independent 

in situ measurements and estimated canopy chlorophyll content were used. Results demonstrate a 

proper agreement between estimated and measured canopy chlorophyll content (R2=0/57). 
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1. Introduction 

Remote sensing data in reflective optical domain function as a unique source for providing 

spatially and temporally information on key biophysical and biochemical parameter of land 

surface vegetation. Chlorophyll content is strongly related to photosynthetic capacity and 

productivity (Barry, 2009). The development of precision agriculture has also fueled the need 

for remote sensing of plant pigments. Since chlorophyll concentration is connected to 

nitrogen, it has become a key measurement parameter in plant canopies (feret et al, 2008; 

Gitelson et al, 2002; Ustin et al, 2004).  

There are three approaches to estimate Chlorophyll via remote sensing. 1) In the 

empirical/statistical approach, statistical techniques are used to obtain a correlation between 

the target variable and its spectral reflectance or some vegetation indices (Darvishzadeh et al, 

2008). The derived statistical relationships are recognized as being sensor specific and 

dependent on site and sampling condition, and are expected to change in space and time 

(Darvishzadeh et al, 2008; colomb et al, 2002). 2) Visible wavelength is strongly absorbed by 

foliar pigments. This energy dissipated as heat or reemitted as chlorophyll fluorescence 

(ChlF). ChlF emission represents only 2-3% of leaf electromagnetic reflectance in the red and 

NIR spectral regions. Although extracting vegetation solar-induced fluorescence have been 

tested in laboratory scale, but using such methods for airborne and satellite based sensor is 

under development and it is not common for practical use in remote sensing community 
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(Malenovsky et al 2009). 3) Physical models which are based on the inverted use of radiative 

transfer (RT) models are relevant alternative to statistical and fluorescence approaches. These 

models describe photon propagation through leaf, canopy, soil and atmosphere based on 

physical law, thus they can provide explicit connection between at-sensor reflectance and 

biophysical and biochemical variables. RT models are mathematically invertible if the 

solution of the inverse problem to be solved, exist, is unique and depends continuously on 

data (Dorigo et al. 2007). However measurement and model uncertainty are often leading to a 

large range of possible solutions, which prohibits the inversion to be properly solved and may 

lead to ill-posed problem (Koetz et al, 2005; Combal et al, 2002; Atzberger 2004). The 

measurement uncertainties are related to processing of the raw data including radiometric and 

geometric correction and in situ measurements (Houborg, 2009). Models uncertainty results 

mainly from the assumption on the canopy structure and optical properties that not fully 

verified when compared with those of actual canopies (Koetz et al, 2005). 

For model application rice was used in this study, as it is of high economic importance in the 

study area. The goal was to obtain reliable estimate of rice variables (LAI, chlorophyll 

content). The well-known canopy RT model, PROSAILH, which is the coupled version of 

leaf model, PROSPECT (Jacquemoud, 1990), and canopy model, SAILH (Verhoef, 1984, 

1985; kuusk, 1991), was used to extract these variables from optical sensor AVNIR-2. 

 

 

2. Data and Material 

2.1. Filed experiment 

During June 29 – July 14, 2010 an extensive field campaign was conducted in Amol, northern 

part of Iran. Most of the agricultural activities in this area are characterized by rice crop. Sixty 

plots of 30m by 30m were chosen by adopting stratified random sampling. In each plot, three 

to five sub plots of 1m by 1m were randomly selected (depending on the homogeneity of 

sample plot).  

The amount of chlorophyll in each subplot was measured by using a SPAD-502 leaf 

chlorophyll meter. SPAD values are unit less and have to convert to leaf chlorophyll content 

(ug cm-2) by means of an empirical calibration function provided by Markwell et al. (1995). 

Although Markwell function refers to corn leaves, studies have demonstrated that they can be 

applied to other plant species (Darvishzadeh et al 2008).  Leaf area index (LAI) was also 

measured for each subplot destructively and by using an LI 3000 instrument. 

 

2.2. Preprocessing of image 

The ALOS platform was successfully launched by JAXA (Japanizes aerospace exploration 

agency) on January 26 2004 and contains optical AVNIR-2 sensor, PRISM camera for stereo 

mapping and PALSAR.  

An image of AVNIR-2 (July 7, 2010) was processed since JAXA does not deliver AVNIR-2 

images atmospherically corrected; the image was corrected by FLAASH module installed 

with ENVI 4.7 software. FLAASH incorporate the MODTRAN4 radiation code. The final 

output of FLAASH is image reflectance. Geometric correction was done with second-degree 

polynomials, using both the 1:25000 topographic map and handheld GPS-derived control 

points. 
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3. Research Methodology 

3.1. PROSAILH 

The choice of canopy radiative transfer model must satisfy at least two constraints 

(Atzberger et al, 2003): 

 It must allow a fair representation of radiative transfer in the canopy 

 It must also be associated with rather limited number of input variables and small 

computational requirements to facilitate the study. 

too many kinds of such a  model exist, a good review of these models was presented by 

(Dorigo eta al, 2008). 

 

3.1.1. Leaf optical model 

At leaf level, PROSPECT model (Jacquemoud & Baret, 1990) over 450-2400 nm spectral 

domain simulates bi-Lambertin reflectance (refl) and transmittance (tran). Input variables 

include leaf mesophyll structure parameter (N), chlorophyll a and b content (Cab), dry matter 

(Cdm), and water (Cw). The model could then be written as function of its input variables: 

[refl,tran]=PROSPECT (N, Cab, Cdm, Cw). 

 

3.1.2. Canopy optical model 

The SAILH model (Verhoef, 1984, 1985, Kuusk, 1991) is one of the earliest model that 

simulates top of canopy reflectance given observation geometry, canopy structure, leaf optical 

properties and soil reflectance (see Jacquemoud et al, 2009. For more detail). Leaf optical 

properties are simulated by PROSPECT; canopy structure variables are leaf area index (LAI), 

average leaf angle (ALA) and hot spot size (HOT) which is a function of LAI and fraction of 

diffuse incoming solar radiation, skyl. Therefore SAIL model simply writes:  

P
toc

= SAIL (refl, tran, LAI, ALA, HOT, Rs, θs, θv, φ)  

Where θs and θv are sun and view zenith angle, φ is azimuth between both directions. Rs is the 

background reflectance, to account for the change induced by by moisture, observation and 

illumination geometry and roughness. We used a soil brightness parameters (Darvishzadeh. 

2008; Lauvernet et al, 2008 Atzberger. 2003 ;). Thus the Rs is the product of typical soil 

reflectance (Rs
*
) times Bs : 

Rs=Bs.Rs
*
 

Therefor when two models are coupled, 12 inputs parameter considering the leaf, canopy and 

soil have to be specified. 

 

3.2. INVERSION 

The iterative optimization method is the classical technique to invert physical model. It 

searches for the best fit between simulated and measured spectra by iteratively running model 

whit different set of variables. Stopping criteria of iteration is a function known as cost 

function.  There are several cost function used in the literature. A good review of this function 

can be found in (Liang, 2004). The function that we used is: 

RMSEr = 
2

1

( )
n

i
measured simulated

R R

n




 

Where Rmeasured is the measured reflectance at wavelength λ and Rsimulated is simulated 

reflectance. 
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4.  Results and Analysis 

Figure1 illustrates the relation between measured and simulated rice variables using iterative 

optimization method. The R
2
 and RMSE between measured and simulated canopy chlorophyll 

content shows poor relationships which can be count as the effect of ill- posed problem. 

In general, estimating leaf chlorophyll content from physical models was difficult. this 

confirms other studies (Baret and jacqumoud, 1994; Curran et al. 1992; Darvishzadeh et al. 

2008; Weiss et al. 2000a). According to Baret in Liang, 2004, Estimating canopy variables 

from remote sensing measurements is always an under-determined problem, the number of 

unknowns is generally larger than the number of independent radiometric information 

remotely sampled by sensors .  
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Fig.1 Simulated (estimated) vs measured canopy chlorophyll content (left) and leaf 

chlorophyll content (right). 

 

 

For instance in PROSAIL model there is 13 unknown that should be estimated from 4 bands  

( as a case of ALOS), one direction (nadir) and one snap shot; this is obviously and under-

determined problem. In case of the leaf chlorophyll content ill-posed problem cause the 

estimated value reached their upper or lower boundary (Fig.2). 

One way to solve the ill-posed problem is the combination of single variables into synthetic 

variables such as canopy chlorophyll content which as the product of leaf chlorophyll content 

and the leaf area index (Dorigo et al. 2007). In our study canopy chlorophyll content 

estimated with an acceptable accuracy. This is probably due to modulating canopy reflectance 

by LAI and leaf chlorophyll content (Darvishzadeh et al. 2008). 

Since the SAIL model was developed for crops with homogenous canopy cover, the 

performance of the PROSAIL model is better at time of complete canopy closure than early 

stage of growth. This is especially important for rice crops, because in early stage the crop 

lands are inundated and will affect strongly the reflectance of crops in near infrared spectral 

region. This is confirmed when some points ware recognized as outlier when they were in the 

early stage of growth. 
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5. Conclusions 

Widely used PROSAILH model was rather successful in this study and by using ALOS 

multispectral images. Inversion of the model was based on the iterative optimization method. 

This inversion method is too time consuming. In our case for 44 samples it takes 18 hour to 

run the program. Thus another inversion method such as look-up table approach and neural 

network would be a good alternative of iterative optimization method. 

 

0

10

20

30

40

0 10 20 30 40

 

Fig.2. Scatter plot of simulated leaf chlorophyll content 
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